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ABSTRACT:   
 
An integrated damage detection system, which was developed to detect the collapsed buildings due to Kocaeli earthquake, occurred on 17 
August 1999, is introduced. The implementation of the system was carried out in a selected area of the city of Golcuk, TURKEY. The 
developed system is composed of three components: (i) input, (ii) analysis and (iii) output. In the input component, the post-event 
panchromatic aerial image of the study area and the vector building boundaries are fed into the analysis component. In the analysis 
component, an approach, which utilizes the building grey-value and the gradient orientation, is implemented. In the overall assessment of 
the buildings, the grey-value and the gradient orientation-based results are combined and a single label (collapsed or un-collapsed) is 
assigned to each building in an integrated manner. In the output component, the results of the total labeling are presented in both graphical 
and textual mode. The results show that of the 284 buildings analyzed, 254 were labeled correctly as collapsed and un-collapsed 
providing the producer’s accuracies of 81% and 92%, respectively. If the buffer zones are generated around the buildings and the 
assessments are carried out within the buffered building polygons, 258 buildings are labeled correctly providing the producer’s accuracies 
of 81% and 94%, respectively for the collapsed and un-collapsed buildings. It can be concluded that the collapsed buildings caused by the 
earthquake can be successfully detected from post-event aerial images using an automated system approach.  
 

 
1. INTRODUCTION 

 
A strong earthquake (Mw7.4), which is also known as Kocaeli 
earthquake, struck northwest of Turkey in August 17, 1999. This 
severe earthquake lasted for about 45 seconds, killing more than 
17,000 people and destroying many cities and towns including 
Yalova, Izmit, Golcuk and Istanbul. In Golcuk, a significant 
number of multi-story buildings experienced a severe damage 
including the complete collapse of the buildings (MCEER, 
2000). Determining the extent of the damage caused by such a 
catastrophic event is a vital issue for effective emergency 
management and allocation of limited resources. Remote sensing 
becomes an important tool to collect the required information, 
which provides up-to-date information about the earth surface 
features. In many applications of damage assessment and 
building detection, the aerial imagery is widely used due to its 
broad spectral sensitivity, increased spatial resolution, and 
geometric fidelity. In addition to that, various kinds of data 
sources such as nighttime imagery, optical imagery, radar 
imagery, aerial video imagery, and airborne MSS imagery are 
frequently used in the post-quake damage assessment studies. 
 
Several studies have been conducted on earthquake damage 
detection using various data sources. Ishii et al. (2002) proposed 
a two-phase method in order to detect the damaged areas from 
aerial photographs. In the first phase, the combination of color 
and edge information was utilized, which provides the 
discrimination of the damaged areas from the non-damaged. In 
the second phase, the pre- and post-event aerial imagery of the 
same area were analyzed by matching them using the affine 
transformation and also by hand. Then, the colors of the 

corresponding pixels in each image were checked. Thus, the 
damaged areas were extracted by calculating the difference of 
colors of two pixels in the same geographic location. In a 
similar study carried out by Mitomi et al. (2000), the damaged 
buildings were detected by processing the aerial television 
images taken after the 1999 Kocaeli, Turkey and Chi-Chi, 
Taiwan earthquakes. The method was focused on the 
characteristics of damage based on hue, saturation, brightness 
and the edge elements. In a different study, a near-real time 
earthquake damage assessment methodology was proposed by 
Gamba and Casciati (1998). Their two-phase system provided 
the integration of GIS and remote sensing. In the first phase, 
GIS side of the study was performed by collecting and 
analyzing data about the buildings and infrastructures. In the 
second phase, the system received near-real time imagery of the 
suffered area to perform change detection through shape 
analysis and perceptual grouping using the pre- and post-event 
aerial images. Turker and San (2003) used pre- and post-event 
SPOT HRV images to detect the changes due to Izmit 
earthquake. The change areas were identified by subtracting the 
near-infrared channel of the merged pre-event image from that 
of the post-event image. In a recent study, Turker and Cetinkaya 
(2005) detected the collapsed buildings caused by the 1999 
Izmit earthquake using digital elevation models (DEMs) created 
from the aerial photographs taken before (1994) and after 
(1999) the earthquake. The DEMs created from two epochs 
were differenced and the difference DEM was analyzed on a 
building-by-building basis for detecting the collapsed buildings. 
Further, Turker and San (2004) utilized the cast shadows to 
detect the collapsed buildings due to Izmit 1999 earthquake. 
The existing vector building boundaries were used to match the 
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shadow casting edges of the buildings with their corresponding 
shadows and to perform analysis in a building specific manner. 
In a study conducted by Guler and Turker (2004), the collapsed 
buildings due to Izmit, Turkey earthquake were detected from 
post-event aerial photographs using the shadow analysis and 
perceptual grouping procedure. First, the canny edge detector 
algorithm was applied to detect the edges between cast shadows 
and the surroundings. After that, the output edge image was 
converted into vector line segments. Then, these line segments 
were grouped together using a two-level hierarchical perceptual 
grouping procedure. Thus, the damage conditions of the 
buildings were assessed by measuring the agreement between 
the detected line segments and the previously known vector 
building boundaries. Similarly, Sumer and Turker (2004) 
performed the detection of the collapsed buildings due to Izmit, 
Turkey earthquake from the post-event aerial imagery using the 
watershed segmentation algorithm. First, the shadow producing 
edges of the buildings were identified. Then the shadow and 
non-shadow regions of the buildings were detected using the 
watershed segmentation. The extent of the damage was 
determined by measuring the agreement between the shadow 
producing edges of the buildings and the corresponding 
shadows based on the percentage of the shadow pixels. 
 
In this study, we propose a damage detection system in order to 
identify the collapsed buildings in a selected urban area of the 
city of Golcuk by integrating the existing vector building 
boundaries and the post-earthquake aerial imagery. The system 
was developed using the MATLAB programming language, 
which enables the handling of the image processing algorithms.  

 
 

2. STUDY AREA 
 
The implementation of the system was carried out in a selected 
area of the city of Golcuk, which is one of the urban areas most 
strongly hit by the Kocaeli earthquake. The region is located on 
the south coast of Izmit Bay, which is east-west elongated 
structural basin situated along the North Anatolian Fault (NAF) 
at the eastern margin of the sea of Marmara. The study area 
consists of 284 rectangular shaped buildings. Of these 
buildings, 79 were collapsed while the remaining 205 were un-
collapsed (Figure 1). 
 
 

3. DAMAGE DETECTION SYSTEM 
 

The general architecture of the developed system is illustrated 
in figure 2. As can be seen in the figure, two different inputs are 
fed into the analysis component, which are the post-event aerial 
photograph and the vector building boundaries. In the analysis 
component, an approach based on building grey-value and 
gradient orientation is presented. Finally, in the output side, the 
graphical and textual results are obtained. 
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Figure 1. Study area 
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Figure 2.  General architecture of the system 

 
3.1 Input Component 
 
The post-event panchromatic aerial image and the vector 
building boundaries are fed into the analysis component. To 
implement the approach, the 1-m spatial resolution post-quake 
aerial photograph supplied by the General Command of 
Mapping (GCM) of Turkey was used. The post quake aerial 
photographs (1:16,000) were acquired by GCM in September 
1999 and were scanned at 21µm to convert them into digital 
form (Figure 1). The vector building boundary data set contain, 
for each building, the Cartesian coordinates of the edge points 
(Figure 3). 
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Figure 3. (a) Vector building boundaries, (b) the edges of a  

       building and (c) the structure of vector data 
 

3.2. Analysis Component 
 
The proposed approach for detecting the damaged buildings 
contains two branches: (i) Building Grey-Value, and (ii) 
Gradient Orientation.  
 
3.2.1 Building Grey-Value Approach: In this approach, the 
damage detection process was performed based on the building 
grey-value information. It was observed that in the study area, 
the collapsed buildings reflect higher brightness values (BVs) 
than the un-collapsed ones. The difference in the reflection may 
be due to the roof type (mostly tile), which appears dark in the 
panchromatic images. In addition, for un-collapsed buildings, 
the shadows caused by the slope of the roofs may also diminish 
the BVs. Therefore, it can be said that the amount of light 
intensity reflected by the buildings may vary. The BV variation 
between a collapsed and un-collapsed building is illustrated in 
figure 4. 
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Figure 4. (a) An un-collapsed building with low BV and (b) a 
collapsed building with higher BV. 
 
In this approach, the first step was to determine a grey-value 
threshold level (TGV). This was done through analyzing the BVs 
of the all collapsed and un-collapsed buildings in the reference 
data. To find the optimum threshold value, the grey-value 
histograms were generated for both the collapsed and un-
collapsed buildings. Then, the intersection of the two normal 
curves, which give the optimum grey-value threshold, was 
computed by using the normalization curve (1). 

 
 
y=f(x | µ,σ)= 
 
 
where, µ is the mean value of the normal curve and σ is the 
standard deviation. In the present case, the optimum threshold 
level was computed to be 145. This means that the collapsed 
buildings have an average BV greater than 145. For each 
building, those pixels that have grey-values above the threshold 
of 145 (TGV = 145) were counted and divided to total number of 
pixels contained within the buildings. This value gave us the 
pixel ratio (PR) per building. For instance, if the number of 
pixels staying above TGV is 114 and the total number of pixels 
contained within the building is 256 then, for this building, PR 
is computed to be 44.53% (114 / 256 = 0.4453). 
 
It was observed that generally the PRs were higher for the 
collapsed buildings than the uncollapsed. This is because the 
pixels with high grey-values are frequently encountered within 
the collapsed buildings. At the end of the analysis, the 60% 
pixel ratio was accepted to be the optimum threshold level to be 
used in discriminating the collapsed and un-collapsed buildings. 
To find the optimum ratio, the error matrices were constructed 
for the varying pixel ratios, which change between 10% and 
90%. By using these matrices, several predefined accuracy 
indices including the overall accuracy, overall kappa, average 
user’s and producer’s accuracies, and combined user’s and 
producer’s accuracies were computed. Most of these indices 
provided the highest percentage for the PR level of 60%. 
Therefore, 60% was chosen to be the optimal PR.  
 
3.2.2 Gradient Orientation Approach: This approach is based 
on the detection of the variation in the gradient direction for 
each building image patch. It is assumed that, for collapsed 
buildings, the direction of gradient is randomly distributed. On 
the other hand, for un-collapsed buildings, the orientation of the 
gradient is assumed to be more regular and concentrated in a 
few directions (Figure 5). This assures that the collapsed 
buildings can be discriminated from the un-collapsed by 
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analyzing the angle information of the gradient image of the 
buildings. 
 

    

 
Figure 5. (a) A collapsed building with random gradient 
directions and (b) an un-collapsed building with regular gradient 
patterns 

 
In the first step, the vertical and horizontal partial derivatives 
were computed by averaging the finite differences over a 2x2 
square array (2).  
 

P(x,y) ≈ (I(x,y+1) - I(x,y) + I(x+1,y+1) - I(x+1,y)) / 2 
Q(x,y) ≈ (I(x,y) - I(x+1,y) + I(x,y+1) - I(x+1,y+1)) / 2 

 
where, P(x,y) and Q(x,y) are the vertical and horizontal partial 
derivatives, respectively and I(x,y) is the original image. Then, 
the magnitude and the orientation of the gradient were 
calculated (3). 
 

M(x,y) ≈ (P(x,y)2 + Q(x,y)2) ½

θ(x,y) ≈ arctan (Q(x,y), P(x,y)) 
 
where, M(x,y) is the magnitude of the gradient and θ(x,y) is the 
orientation of the gradient. The function arctan (x,y) computes 
an angle between [-π, +π]. However, in the present study, this 
range is mapped into [0, +π]. The partial representation of the 
gradient magnitude and the orientation (for each pixel) are 
illustrated in figure 6, where the numbers represent, for the 
corresponding pixels, the angles between 0o and 180o. 
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Figure 6. (a) The gradient magnitude and (b) the gradient 
orientation (in degrees) of a selected area of a building patch 
 
After obtaining the gradient orientation, the whole angle range 
(0o - 180o) was divided into 15o subintervals, which were 0-15, 
16-30, 31-45, 46-60, 61-75, 76-90, 91-105, 106-120, 121-135, 
136-150, 151-165 and 166-180. Then, for each building, the 
gradient direction histograms were generated. In these 
histograms, the abscissa represents the gradient direction from 
0o to 180o divided into 12 equal intervals, while the ordinate 
represents the frequency of the gradient directions (Figure 7).  
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Figure 7. (a) An un-collapsed building and (b) a collapsed 
building with unbiased frequencies 
 
It can be observed in figure 7 that the interval (0o-15o) was not 
taken into account due to its high frequency, which causes a 
biased distribution. After the elimination of this interval, the 
histogram of a collapsed building looks relatively flat compared 
with the histogram of an un-collapsed building. 

(3) 

 
The last step was finding an optimum standard deviation 
threshold level (TSD) that discriminates the collapsed buildings 
from the un-collapsed. To do that, the average of the standard 
deviation values of all collapsed and un-collapsed buildings 
were computed to be 16.07 and 17.93, respectively. Then, TSD 
was found to be 17 by computing the intersection of the two 
normal curves as described previously. 

 
3.2.3 Assessments of the Building Conditions by Combining  
         the Two Approaches 
 
The final decision about the building condition was made by 
combining the threshold levels found in the building grey-value 
and the gradient orientation approaches. A building was marked 
collapsed if the PR computed for it was above the threshold of 
60% and the standard deviation of the gradient direction 
distribution was below the optimum TSD of 17. Otherwise, the 
building was labeled un-collapsed.   

(a) (b) 

 
3.3 The Results and the Output Component 

 
All the buildings falling within the study area were assessed. Of 
the 284 buildings, 254 were correctly detected by the proposed 
integrated damage detection system. The error matrix, which 
includes the overall accuracy, the user’s and producer’s 
accuracies for collapsed and un-collapsed buildings, is 
illustrated in table 1. 
 
 
 



 
Reference  

Collapsed Un-collapsed Total 
Collapsed 64 15 79 

Un-collapsed 15 190 205 
Total 79 205 284 

Producer’s Accuracy (%) 81,01 92,68  
User’s Accuracy (%) 81,01 92,68  
Overall Accuracy (%) 89,44   

 
Table 1. The error matrix computed using the optimum PR and 
the standard deviation threshold level (TSD). 

 
The overall accuracy was computed as 89.44%. For un-
collapsed buildings, both the producer’s and user’s accuracies 
were found to be 92.68%. For collapsed buildings, the user’s 
and producer’s accuracies were same (81.01%). It can be 
observed that due to several reasons 30 buildings were not 
detected correctly. The erroneously detected buildings represent 
omission and commission errors.  
 
The output component of the developed damage detection 
system yields two forms of output. The first output is in textual 
form (Table 2). 
 
--------------------------------------------------------------------- 
Optimum Standard Deviation Threshold Level (TSD): 17 
Optimum Pixel Ratio (PR): 60% 
--------------------------------------------------------------------- 
 
Pixel Ratio: 47.27% 
Standard Deviation: 13.15 
 
Analysis: Building # 2 is UN-COLLAPSED 
Ground Truth: Building # 2 is UN-COLLAPSED 
---------------------------------------------------------------------- 
Pixel Ratio: 82.43% 
Standard Deviation: 7.50 
 
Analysis: Building # 3 is COLLAPSED 
Ground Truth: Building # 3 is COLLAPSED 
 
Table 2. A sample textual output for the buildings #2 and #3. 

 
In table 2, the buildings #2 and #3 were labeled un-collapsed 
and collapsed through the proposed building grey-value and 
gradient orientation analyses approaches. These labels were 
compared with the ground truth information and an agreement 
was observed between them. Therefore, for these buildings, the 
labels were said to be correct. 
 
The second type of output is in the graphic form, which 
illustrates the damage conditions of the buildings graphically. 
To do this, four distinct colors were used for representing the 
conditions of the buildings. While the green and red colors 
represent the un-collapsed and collapsed buildings, the blue and 
yellow colors represent the erroneously detected buildings, 
which are the omission and commission errors in the error 
matrix. The omission error means that the collapsed buildings 
were detected as un-collapsed. On the other hand, the 
commission error means that the un-collapsed buildings were 
labeled as collapsed. These error types are illustrated in figure 8.  
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Figure 8. (a) Un-collapsed building, (b) collapsed building, (c) 
omission error, and (d) commission error.  
 
In the last part of the study, an improvement was made on the 
proposed approaches. This was achieved by generating a one-
pixel wide buffer region around the boundaries of the vector 
building polygon (Figure 9). The purpose for generating the 
buffer zone was to improve the accuracy of the proposed 
damage detection system.  
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Figure 9. A building polygon (a) with no buffer zone and (b) 
with one-pixel buffer zone. 
 
The reasons for selecting the size of the buffer zone as one pixel 
are twofold: (i) generating a buffer zone wider than one pixel 
may increase the chance of the inclusion of the unnecessary 
shadow areas cast by the building under consideration and (ii) 
the buffer zone wider than one pixel may increase the chance of 
the inclusion of the undesired building areas and the shadow 
areas of the neighboring buildings.  
 
As in the without buffer case, the threshold levels required to 
perform the analyses were also computed in the buffer case 
(when a one pixel wide buffer zone is generated). For the buffer 
case, the optimum grey-value threshold level (TGV) was 
computed to be 141. On the other hand, the optimum pixel ratio 
(PR) and the optimum standard deviation threshold level (TSD) 
were found to be 60% and 17.31, respectively. Therefore, the 
analyses of the buildings were repeated using the PR value of 
60% and the optimum standard deviation threshold level of 
17.31. The results given in table 3 as an error matrix reveal that 



of the total 284 buildings analyzed, 258 were correctly labeled 
yielding an overall accuracy of 90.85%. Furthermore, for 
collapsed buildings, the producer’s and user’s accuracies were 
computed to be 81.01% and 85.33%, respectively. For un-
collapsed buildings, the producer’s and user’s accuracies were 
found to be 94.63% and 92.82%, respectively. As can be seen in 
the error matrix, 26 buildings were not detected correctly. Of 
these erroneously detected 26 buildings, 15 were not detected as 
collapsed. Instead, 11 un-collapsed buildings were detected as 
collapsed. In each case, the erroneously detected buildings 
represent the omission and commission errors, respectively 
 

Reference  
Collapsed Un-collapsed Total 

Collapsed 64 11 75 
Un-collapsed 15 194 209 

Total 79 205 284 
Producer’s Accuracy (%) 81,01 94,63  

User’s Accuracy (%) 85,33 92,82  
Overall Accuracy (%)  90,85   

 
Table 3. The error matrix computed from the analyses of the 
buffered buildings 

 
 

4. CONCLUSIONS 
 
In this study, an integrated damage detection system was 
introduced. The analysis component of the system contains a 
two branch decision mechanism for labeling the damage 
conditions of the buildings. While in the first branch the 
decision is made based on building grey values, in the second 
branch the gradient orientation procedure is used. The 
developed system was implemented in the city of Golcuk, 
which is one of the urban areas most strongly affected by the 
1999 Izmit earthquake. The results achieved are satisfactory. 
The overall accuracy was computed to be 89.44%. On the other 
hand, for the collapsed and un-collapsed buildings, the 
producer’s accuracies were found to be 81.01% and 92.68%, 
respectively. In the output component, the visualization of the 
labeled buildings was provided by textual and graphical outputs.  
 
In order to improve the accuracy, one pixel wide buffer zone 
was generated around the building polygons and the damage 
assessments were re-performed. It was found that the overall 
accuracy increased to 90.85%. On the other hand, for the 
collapsed and un-collapsed buildings, the producer’s accuracies 
were computed to be 81.01% and 94.63%, respectively. It was 
observed that for un-collapsed buildings, the producer’s 
accuracy was improved when one-pixel wide buffer region is 
included in the assessments. 
 
The major benefit of the developed system is that it provides an 
automatic detection of the collapsed buildings efficiently and 
effectively on building-by-building basis. The integration of the 
post-quake raster aerial image and the vector building boundary 
data appears to be very useful as it increases the overall and 
producer’s accuracies. It can be stated that the collapsed 
buildings caused by the earthquake can be successfully detected 
from post-event aerial images using an automated system 
approach. 
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